Introduction to Likelihood-based Estimation and Inference

Introduction to Likelihood-Based Estimation and Inference provides a thorough and self-contained introduction to statistical modelling within the framework of the likelihood function.

Based on worked-through examples, the book presents the main principles for estimation of parameters using the likelihood approach, the principles for applying basic probability theory to characterize the stochastic properties of estimators and test statistics, as well as ideas for basic model control and misspecification testing. Examples include models for Bernoulli trials, models for Poisson count data, and the linear regression model as a special case of the likelihood analysis of a Gaussian model.

The book also introduces numerical optimization of the likelihood function, which provides the tools for building and analyzing more complicated – and empirically relevant – cases.

 

Introduction to Likelihood-based Estimation and Inference

Fås som

  • Bog
  • i-bog

Fakta

ISBN:
9788741269047
Udgave:
3
Udgivelsesdato:
23. marts 2017
Sider:
208
Redaktør:
Lasse Wolsgård

Vi bruger cookies på www.hansreitzel.dk

Det gør vi for at sikre en god brugeroplevelse og for at indsamle statistik, der kan være med til at forbedre din oplevelse af siden. Hvis du klikker dig videre på siden, accepterer du samtidig vores brug af cookies. Læs mere om cookies